

Global Spread of HIV-1 Drug Resistance: Meeting the Challenge

Urvi Parikh, PhD John W Mellors, MD

MTN Regional Meeting Cape Town, SA Oct 31, 2013

Outline

• Refresher on HIV Drug Resistance

– Principles, types, major vs. minor

• Drivers of HIV resistance

– PrEP vs ART

• What can we do to minimize resistance?

- Multiple improvements required

• Take home message

- We need to meet the challenge!

Principles of Resistance

• HIV-1 can develop resistance to any ARV

HIV Replication + One or Two ARV = RESISTANCE

NO REPLICATION (3 Drug ART) = NO RESISTANCE

- Remove drug, resistance decays, but it depends on mutation and drug
 - M184V (3TC/FTC) = fast
 - K103N (NNRTI) = slow

Types of Resistance

ACQUIRED

- Infected with <u>wildtype</u> virus
- Resistance selected by sdNVP, ART or PrEP
- Can infect partner with resistant virus

TRANSMITTED

- Infected with <u>resistant</u> virus
- Never exposed to ARVs
- Partner received ART, sdNVP or PrEP
- Or partner infected with resistant virus (2° transmission)

Major vs. Minor

MAJOR

- ≥ 25% of virions in a person are resistant
- Detected by standard population genotype

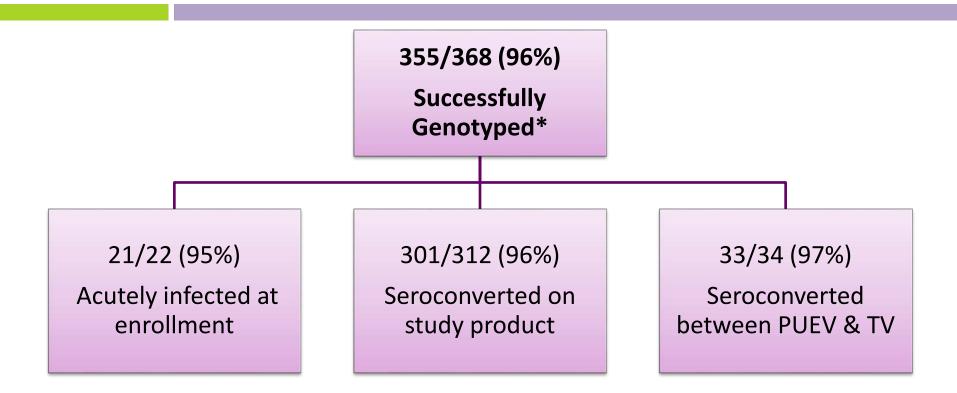
MINOR

- < 25% of virions in a person are resistant
- Missed by standard genotype
- Detected by sensitive methods (ASPCR, SGS, Deep Sequencing)

What drives drug resistance?

Resistance in PrEP Trials

Infected Post-Enrollment


Study	# Sequenced		# Resistant to TDF or FTC	
	Placebo	Active		
Bangkok Tenofovir	35	15	0	
CAPRISA-004	0	35	0	
Fem-PrEP	35	33	1 Placebo (M184V)	
			4 TDF-FTC (M184V/I)	
iPrEX	64	36	0	
Partners in PrEP	51	27	0	
TDF2	24	9	1 Placebo (K65R <1%)	
VOICE/MTN-003	128	173	1 TDF/FTC (M184V)	
TOTAL	665		7 (1%)	

Resistance in PrEP Trials

Enrolled during Acute Seroconversion

Study	# Infected at Enrollment	# Resistant to TDF or FTC	
Bangkok Tenofovir	2	0	
Fem-PrEP	5	0	
iPrEX	10	3 (M184I/V)	
Partners in PrEP	8	2 (1 K65R + 1 M184V)	
TDF2	1	1 (K65R/M184V)	
VOICE	9	2 (M184I/V)	
TOTAL	35	8 (23%)	

Drug Resistance in VOICE

*No result (n=13) due to:

- No stored plasma (n = 1)
- Insufficient copies of HIV-1 RNA for extraction (n = 11)
- PCR amplification failure (n = 1)

VOICE Standard Sequencing

No resistance to TFV

- TFV oral or gel arms (K65R or K70E)
- 0/173 infected after enrollment
- 0/18 acutely infected at enrollment

3 cases of FTC Resistance

• Oral Truvada arm (M184V/I)

- 1/55 infected after 309 days on product
- 2/9 acutely infected at enrollment; on product 26 & 29 d

8 cases of NNRTI resistance (transmitted)

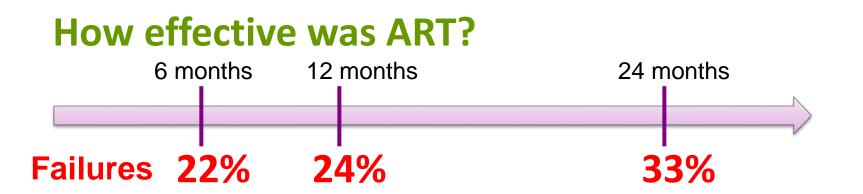
- All arms (K103N/V106M and/or Y181C)
- 8/355 (all seroconverters)
- 2009 WHO TDR mutations (n=34)

Drivers of Resistance from PrEP

- Use of product by acutely infected individuals pre-seroconversion
 - Need better point-of-care tests that can detect infection earlier
- Incomplete protection by product
 - Rare so far
 - Resistance may increase with better adherence
- Product does <u>not</u> protect against transmitted resistance from partner

ART in Africa

<u>First line</u> 2 NRTI + 1 NNRTI



Second line

2 different NRTI + PI

Resistance from 1st Line ART

Virological efficacy and drug-resistance outcomes for 13,288 patients from sub-Saharan Africa on first line ART

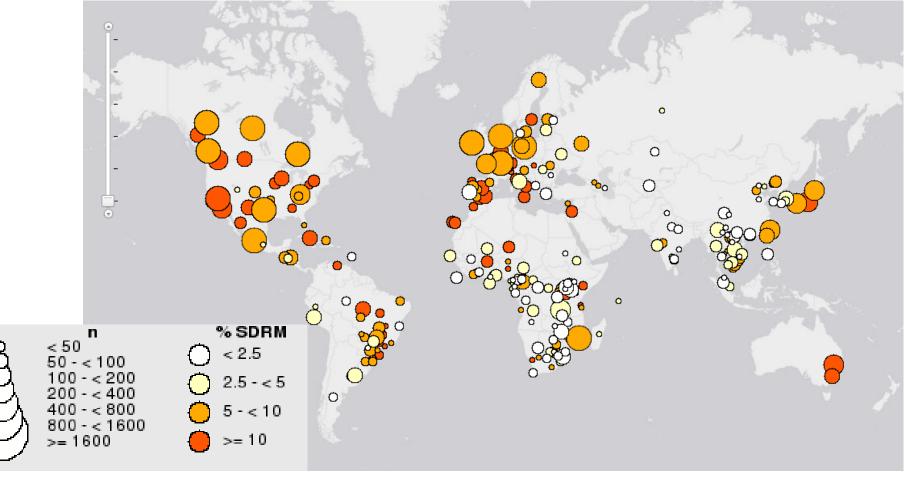
Resistance found in failures: M184V (65%), K103N (52%), TAMS (5-20%), K65R (5%)

Barth et al. Lancet Infect Dis 2010

PASER

PharmAccess African Studies to Evaluate Resistance

- Multi-country 13-site cohort study
- 70% of patients achieved HIV RNA suppression
- 71% resistance among failures; 21% of all on ART!
 - 96% of cases were acquired resistance
 - 4% of cases were transmitted resistance
 - Predominant mutations: K103N, M184V, TAMS, K65R


Resistance to Second Line Therapy

- 22% fail second-line therapy (HIV RNA not suppressed by 6 months)
 - -Major cause: poor adherence
 - PI Resistance is infrequent
- Low level resistance to PI may be caused by mutations in *env*?

Hosseinipour JID 2013; Stray JV 2013

Transmitted Drug Resistance (TDR)

Stanford Resistance Database HIV-1 Drug Resistance in ARV-naive Populations Compendium of published virus sequences from 46,765 persons, 264 studies

Increasing TDR!

 Assessment of published studies and WHO surveys of HIV drug resistance in 26,102 untreated persons in 42 countries showed:

Region	Rate of Increase of TDR/year since ART roll-out (95% CI)	P-value		
East Africa	29% (15 – 45)	0.0001		
Southern Africa	14% (0 – 29)	0.054		
West/Central Africa	3% (-0.9 – 16)	0.618		
Hamers Curr Opin HIV AIDS 2013				

Transmitted Resistance in MTN-009 & VOICE

MTN-009 (Women screening for PrEP Trials)

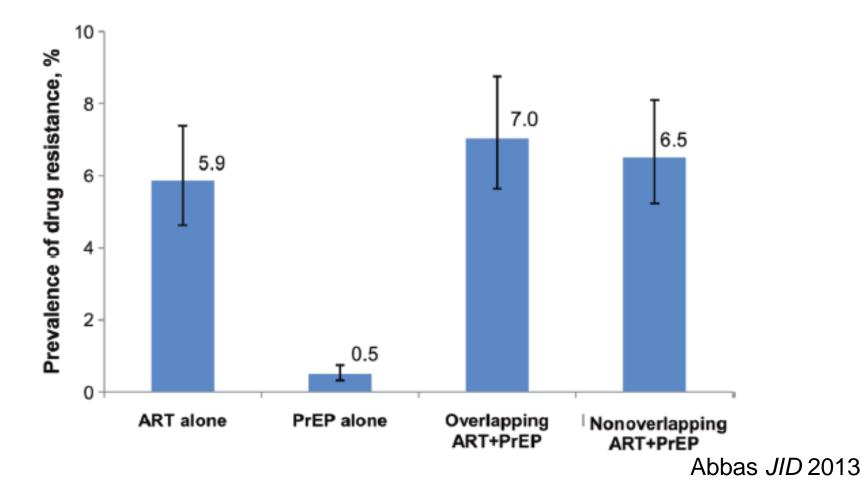
- 26/352 (7.4%) with resistance
 - 62% had single-class NNRTI resistance
 - 19% had dual-class NRTI/NNRTI

VOICE/MTN-003

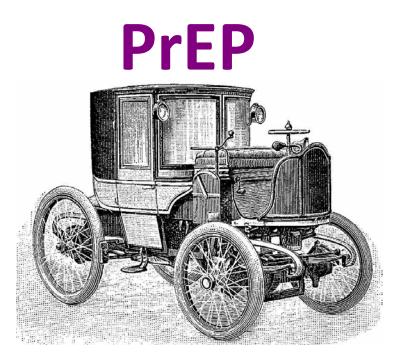
- 8/355 (2.3%) NNRTI-R (K103N/V106M/Y181C)
- 34/355 (9.6%) WHO TDR mutations

Drivers of resistance from ART

Loss to follow-up


Inconsistent access to ART

Adherence


Treatment failure

Drivers of Drug Resistance

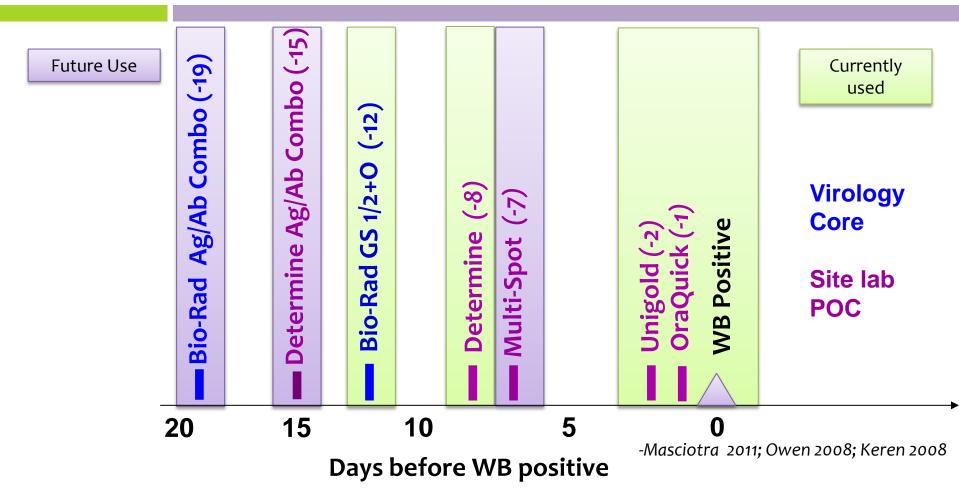
PrEP won't drive resistance – THERAPY will

Drivers of Drug Resistance

What can we do to minimize resistance from PrEP?

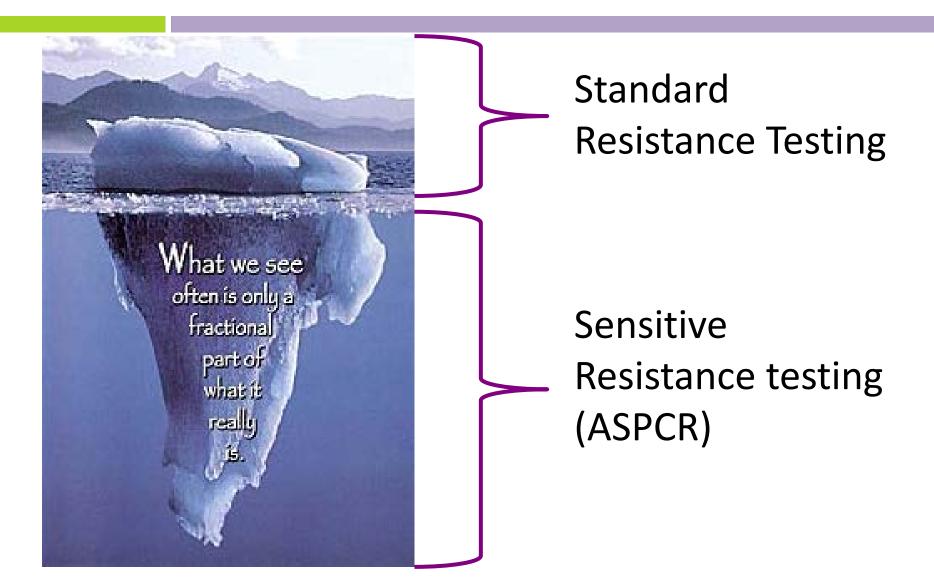
• Earlier detection of HIV infection

"Close the window"


- Detect low frequency mutants that can be transmitted or affect response to ART
- Better understand cross-resistance between PrEP and ART – avoid collisions!
 - NNRTI: efavirenz, nevirapine, rilpivirine, dapivirine

Earlier HIV Detection

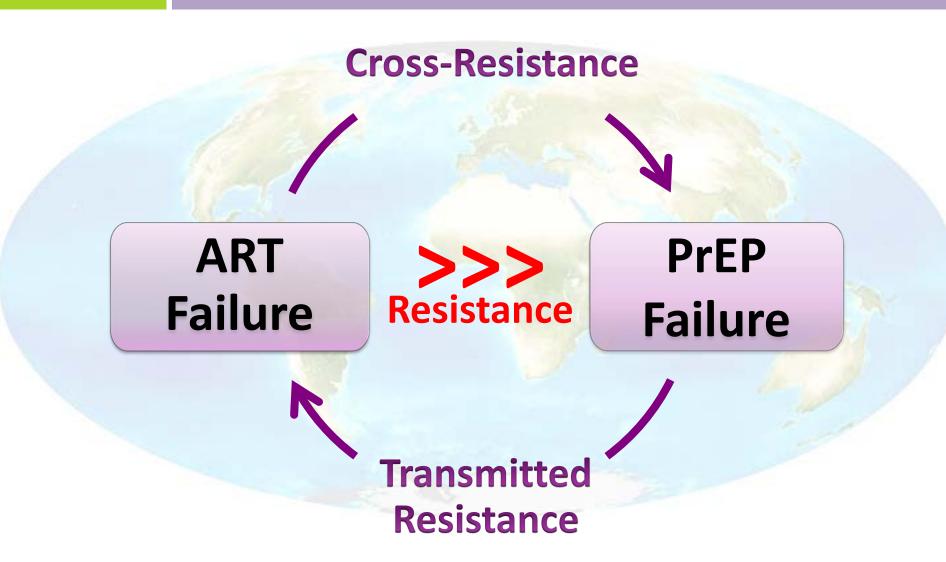
- 31 acute infections in VOICE were missed by current rapid tests (22 @ enrollment; 9 @ PUEV)
- High rate of resistance (8/28; 29%) in subjects acutely infected at enrollment assigned to active product arms (iPrEx, Partners, TDF2, VOICE)
- Highest risk of resistance for PrEP is from acutely infected persons using active product


HIV Replication + One or Two ARV = RESISTANCE

Close the "Window Period" with New Diagnostic Tests

VIROLOGY CORE GOAL: Evaluate new HIV diagnostic tests and redesign endpoint algorithm for future studies

Detect Low Frequency Mutants


Necessity of AS-PCR

- NVP-resistant mutant frequencies >1% are significantly associated with increased risk of NVP-containing ART failure (A5208/Octane).
- No data on the impact of low frequency <u>NRTI</u> mutations on response to future ART
 - Tenofovir and 3TC/FTC used as 1st line therapy in Sub-Saharan Africa
- Will seroconverting on product select for low-frequency resistance mutations?
 – In ASPIRE?

What can we do to minimize resistance from ART?

- Individual monitoring of ART for viral breakthrough/treatment failure
 - POC HIV-1 RNA assays
- Differentiate non-adherence from HIV-1 drug resistance as cause of breakthrough/failure
 - POC tests for ARV levels or common drug resistance mutations
- Better access to 2nd line therapy for first-line resistance
 - 2nd line may become first-line in specific regions
- Real-time global surveillance for HIV-1 drug resistance
 When to switch first-line regimen?
- Strengthen ARV supply chain
 - Prevent stock outs

Global Threat of Resistance

We can meet the challenge by...

- Improved individual and epidemiological monitoring for ART failure and drug resistance using standard and sensitive methods for detection
- Simplified single tablet regimens for 1st, 2nd, 3rd ART with a <u>strong</u> supply chain
- Improving HIV diagnostic tests to close the window period during which PrEP could cause resistance
- Gaining a better understanding of cross-resistance between ART and PrEP through analysis of patientderived viruses, thus avoiding collisions!

Acknowledgements

MTN Virology Core Staff

Current

- Kelley Gordon
- Kristen Cummings
- Kerri Penrose
- Russell Hardesty
- Constantinos Panousis

Recently moved on to bigger Things

- Krista Eskay, PT 2B
- Maritsa Scoulos-Hanson DO 2B

MTN is funded by NIAID (5U01AI068633), NICHD and NIMH, all of the U.S. National Institutes of Health.